Search results

Search for "quartz crystal microbalance" in Full Text gives 45 result(s) in Beilstein Journal of Nanotechnology.

Elasticity, an often-overseen parameter in the development of nanoscale drug delivery systems

  • Agnes-Valencia Weiss and
  • Marc Schneider

Beilstein J. Nanotechnol. 2023, 14, 1149–1156, doi:10.3762/bjnano.14.95

Graphical Abstract
  • determine mechanical properties of nanoparticles (or their corresponding bulk materials) highlighting quartz crystal microbalance, rheology, and atomic force microscopy (AFM) are summarized by Li et al. [18]. Another often reported method is particle deformability, being extrusion a possibility for
PDF
Album
Perspective
Published 23 Nov 2023

Properties of tin oxide films grown by atomic layer deposition from tin tetraiodide and ozone

  • Kristjan Kalam,
  • Peeter Ritslaid,
  • Tanel Käämbre,
  • Aile Tamm and
  • Kaupo Kukli

Beilstein J. Nanotechnol. 2023, 14, 1085–1092, doi:10.3762/bjnano.14.89

Graphical Abstract
  • pulse length for the iodide precursor, the SnI4–O3 process was, at first, examined in situ using a quartz crystal microbalance (QCM) [17]. The QCM data were acquired with a Q-pod quartz crystal monitor (Inficon) at a stabilized reactor temperature of 300 °C. For the film growth for ex situ measurements
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2023

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • Yinglin Ma Xiangyun Xiao Qingmin Ji Herbert Gleiter Institute for Nanoscience, School of Materials Science and Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei, Nanjing, 210094, China 10.3762/bjnano.13.100 Abstract Quartz crystal microbalance (QCM) has been widely used
  • ; chiral surface; chirality recognition; quartz crystal microbalance (QCM); sensing applications; surface architecture; Introduction Chirality is a prevalent phenomenon in nature. Many common biological macromolecules such as proteins, ribose, and cellulose are inherently chiral. Chiral molecules have two
  • sensing systems for enantiomers, which still remains challenging. Quartz crystal microbalance (QCM) is a well-known mass-sensor technique capable of recording changes in nanogram or even picogram levels in both gas and liquid phases [20][21]. The sensing of mass changes is based on the oscillation
PDF
Album
Review
Published 27 Oct 2022

Plasmon-enhanced photoluminescence from TiO2 and TeO2 thin films doped by Eu3+ for optoelectronic applications

  • Marcin Łapiński,
  • Jakub Czubek,
  • Katarzyna Drozdowska,
  • Anna Synak,
  • Wojciech Sadowski and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2021, 12, 1271–1278, doi:10.3762/bjnano.12.94

Graphical Abstract
  • . The round Au target with 99.99% purity was sputtered by 30 W of incident power. The rate of Au layer deposition was about 4 Å/s. Thickness was controlled by a built-in quartz crystal microbalance. As prepared films were subsequently put in a hot furnace for the formation of nanostructures. Samples
  • :Eu, and TiO2:Eu layers was conducted at 200 °C. The pressure in the chamber was approximately 0.2 Pa and the distance between target and substrate was approximately 10 cm. The sputtering system was equipped with a quartz crystal microbalance for the in situ measurements of film thickness. In order to
PDF
Album
Full Research Paper
Published 22 Nov 2021

Analysis of catalyst surface wetting: the early stage of epitaxial germanium nanowire growth

  • Owen C. Ernst,
  • Felix Lange,
  • David Uebel,
  • Thomas Teubner and
  • Torsten Boeck

Beilstein J. Nanotechnol. 2020, 11, 1371–1380, doi:10.3762/bjnano.11.121

Graphical Abstract
  • ) wafer. The subsequent chemical–mechanical polishing provided a highly flat surface (RMS = 0.3 nm). Gold with a nominal thickness of 1 nm was evaporated from an effusion cell onto the heated substrate with a deposition rate of 0.01 nm/s, which was calibrated before with an Inficon XTC/3 quartz crystal
  • microbalance (Bad Ragaz, Switzerland). Series of experiments were carried out at substrate temperatures of 300, 400, 500, 550, 600, and 650 °C, in case of SiOx on Si(001), and substrate temperatures in the range of 400 to 700 °C, in steps of 50 K, for Si(111) wafers. The gold droplet formation was analysed
PDF
Album
Supp Info
Full Research Paper
Published 09 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • [60] and vacuum-sublimed on clean metal surfaces (prepared by repeated Ar+ ion sputtering and annealing cycles [up to 550 °C]), with deposition rates of about 0.5 Å/min. The film mass thickness was monitored with a quartz crystal microbalance (QCM) near the sample, and a nominal thickness of 4 Å is
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • rate (0.25 ML/min) was determined using a quartz crystal microbalance. Scanning tunneling microscopy (STM) experiments were performed with the use of either a low-temperature STM (LT-STM) operating at ca. 78 K or a room-temperature STM (RT-STM) manufactured by Scienta Omicron installed in a separate
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • measured in situ using a quartz crystal microbalance. To form nanostructures, the as-prepared films were put into a hot furnace and annealed in argon atmosphere at different temperatures for different periods of time. The surface morphology of the samples was analyzed using a FEI Quanta FEG 250 SEM
PDF
Album
Full Research Paper
Published 25 Mar 2020

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • evaporation chamber. The thickness and deposition rate (10 Å s−1) were monitored using a quartz crystal microbalance. After evaporation of Au, the substrates were cooled and the chamber was backfilled with nitrogen. The substrates were stored under argon and flame-annealed in a butane/oxygen flame immediately
  • adhesion layer. The thickness and deposition rate (10 Å s−1) were monitored using a quartz crystal microbalance. Between substrate preparation and SAM formation, the substrates were stored in an argon atmosphere. The formation of the PAT monolayers on the gold silicon wafer was described above. Grafting
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • liquid–liquid interfacial precipitation from 2-propanol and C60 solution in dodecylbenzene as reported by Shrestha and co-workers (Figure 17) [247]. Quartz crystal microbalance sensors coated with the bitter-melon-shaped objects exhibited excellent sensing properties for aromatic vapours with
  • . Quartz crystal microbalance sensors modified with these hierarchic C70 assemblies exhibited an excellent sensitivity to aromatic molecules in their vapour phase probably due to facile diffusion through the porous structure, high surface-area contact and advantageous π–π interaction. The formation of low
  • carbonized at 2000 °C in vacuum, resulting in morphology-preserved one-dimensional carbon materials with sp2-hybridised π-electron-rich robust frameworks (Figure 16). Due to their highly aromatic nature, microbalance sensors with the synthesized one-dimensional carbon materials on a quartz crystal
PDF
Album
Review
Published 30 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • homogeneous air-sensitive thin films, characterized by using ellipsometry, grazing incidence X-ray diffraction (GIXRD), in situ quartz crystal microbalance, and scanning electron microscopy, was observed. Lithium hydride diffraction peaks have been observed in as-deposited films by GIXRD. X-ray photoelectron
  • chemistry, a quartz crystal microbalance (QCM) system was installed behind the exit of the deposition setup with tubing of minimal length (2 cm), effectively allowing the deposition to occur on the QCM crystal as well. The waste pumped out of the QCM chamber was immediately neutralized with ethanol
PDF
Album
Full Research Paper
Published 18 Jul 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • quartz crystal microbalance. Characterization of semicontinuous silver films Optical properties of SSFs were characterized using UV–vis–NIR Perkin Elmer Lambda 900 spectrometer. Transmittance was measured using a standard detector, while reflectance was measured with an integrating sphere module
PDF
Album
Full Research Paper
Published 15 May 2019

Ultrathin hydrophobic films based on the metal organic framework UiO-66-COOH(Zr)

  • Miguel A. Andrés,
  • Clemence Sicard,
  • Christian Serre,
  • Olivier Roubeau and
  • Ignacio Gascón

Beilstein J. Nanotechnol. 2019, 10, 654–665, doi:10.3762/bjnano.10.65

Graphical Abstract
  • OPD/MOF ultrathin films have been fabricated onto glass, calcium fluoride, quartz crystal microbalance (QCM), Si(100) substrates and mica and characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), atomic force microscopy (AFM
  • that were further characterized. CO2 adsorption studies In order to study the effect of the surfactant on the adsorption capacity of the MOF sMPs, CO2 adsorption studies were performed using the quartz crystal microbalance (QCM)-based setup described in the experimental section. Drop-cast films of the
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Biocompatible organic–inorganic hybrid materials based on nucleobases and titanium developed by molecular layer deposition

  • Leva Momtazi,
  • Henrik H. Sønsteby and
  • Ola Nilsen

Beilstein J. Nanotechnol. 2019, 10, 399–411, doi:10.3762/bjnano.10.39

Graphical Abstract
  • .; Eidet, J. R. J. Biomed. Mater. Res., Part A 2018, 106, 3090–3098. doi:10.1002/jbm.a.36499]. The growth was followed by in situ quartz crystal microbalance (QCM) measurements and all systems exhibited atomic layer deposition (ALD) type of growth. The adenine system has an ALD temperature window between
  • precleaned single crystal substrates cut from Si(100) wafers. The growth dynamics were investigated in situ by a quartz crystal microbalance (QCM) using a Maxtek TM400 unit and homemade crystal holders. A change in resonance frequency of the crystal is linearly proportional to the mass of the deposited film
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • ) under pure Ar plasma conditions (Argon, Air Products 99.999%). The Au target had 99.99% purity, the rate of Au layer deposition was about 0.4 nm·s−1 and the incident power was 32 W. The thickness of the films was measured in situ by a quartz crystal microbalance. The films were subsequently annealed at
PDF
Album
Full Research Paper
Published 28 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Recent highlights in nanoscale and mesoscale friction

  • Andrea Vanossi,
  • Dirk Dietzel,
  • Andre Schirmeisen,
  • Ernst Meyer,
  • Rémy Pawlak,
  • Thilo Glatzel,
  • Marcin Kisiel,
  • Shigeki Kawai and
  • Nicola Manini

Beilstein J. Nanotechnol. 2018, 9, 1995–2014, doi:10.3762/bjnano.9.190

Graphical Abstract
  • , surface-force apparatus (SFA), and quartz-crystal microbalance (QCM) experiments measure the system frictional response in terms of crucial, but averaged, physical quantities, colloidal friction provides an unprecedented real-time insight into the dynamical mechanisms at play in 2D contacts, excitingly
PDF
Album
Review
Published 16 Jul 2018

A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds

  • Colin K. Curtis,
  • Antonin Marek,
  • Alex I. Smirnov and
  • Jacqueline Krim

Beilstein J. Nanotechnol. 2017, 8, 2045–2059, doi:10.3762/bjnano.8.205

Graphical Abstract
  • to values in the range 0.05–0.1 for both stainless steel and alumina, while +ND suspensions yielded an increase in friction for stainless steel contacts but little to no increase for alumina contacts. Quartz crystal microbalance (QCM), atomic force microscopy (AFM) and scanning electron microscopy
  • : additives; alumina; aqueous colloids; fractal; friction; lubricants; nanodiamond; nanotribology; quartz crystal microbalance; stainless steel; Introduction Interest in nanoparticles as eco-friendly lubricant additives has grown tremendously in recent years [1][2]. The field is driven in a large part by a
  • typical settings of an accelerating voltage and a bias of 2.00 kV and 200 V, respectively. Quartz crystal microbalance apparatus QCM data were collected using a QCM100 (Stanford Research Systems, Sunnyvale, CA, USA) system. The system includes a controller, oscillator electronics and a Teflon holder and a
PDF
Album
Full Research Paper
Published 29 Sep 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • Figure 3b. Quartz crystal microbalance (QCM) can measure the total mass flux of the NPs (neutral, positively and negatively charged) without any voltage applied to the grids. A highly positive or negative potential applied to the central grid repels the NPs of the opposite charge and allows the rest to
PDF
Album
Review
Published 25 Sep 2017

Surface functionalization of 3D-printed plastics via initiated chemical vapor deposition

  • Christine Cheng and
  • Malancha Gupta

Beilstein J. Nanotechnol. 2017, 8, 1629–1636, doi:10.3762/bjnano.8.162

Graphical Abstract
  • size. The stage temperature can impact the thermal gradient during polymerization. The concentration of monomer at the surface of the substrate increases with decreasing temperature as previously shown by quartz crystal microbalance experiments by Lau and Gleason [24]. At a given stage temperature, we
PDF
Album
Full Research Paper
Published 08 Aug 2017

Energy-level alignment at interfaces between manganese phthalocyanine and C60

  • Daniel Waas,
  • Florian Rückerl,
  • Martin Knupfer and
  • Bernd Büchner

Beilstein J. Nanotechnol. 2017, 8, 927–932, doi:10.3762/bjnano.8.94

Graphical Abstract
  • evaporators. The film thickness was monitored by a quartz crystal microbalance and additionally determined using the intensity change of the Au 4f7/2 core level peak according to the method established by Seah and Dench [44]. We have grown the interfaces under investigation by both deposition sequences, MnPc
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • monitored using a quartz crystal microbalance. Substrates for thermal desorption spectroscopy measurements were gold covered mica sheets. Freshly cleaved mica sheets (Mahlwerk Neubauer - Friedrich Geffers) were heated to 280 °C for about two days inside the evaporation chamber to remove residual water and
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • variable temperature (VT) scanning tunneling microscope (STM), an ion gun, an effusion cell manufactured by Kentax GmbH, and a quartz crystal microbalance. The base pressure in the system was kept at 1 × 10−10 mbar. The rutile TiO2(011) samples purchased from MaTeck were prepared in a standard procedure by
PDF
Album
Full Research Paper
Published 11 Jan 2017

Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D

  • Jagoba Iturri,
  • Ana C. Vianna,
  • Alberto Moreno-Cencerrado,
  • Dietmar Pum,
  • Uwe B. Sleytr and
  • José Luis Toca-Herrera

Beilstein J. Nanotechnol. 2017, 8, 91–98, doi:10.3762/bjnano.8.10

Graphical Abstract
  • (USP), Faculty of Philosophy, Science and Letters of Ribeirao Preto (FFCLRP), Department of Chemistry, Ribeirao Preto, SP, Brazil 10.3762/bjnano.8.10 Abstract Quartz crystal microbalance with dissipation monitoring (QCM-D) has been employed to study the assembly and recrystallization kinetics of
  • : bacterial S-layers; Quartz crystal microbalance with dissipation monitoring (QCM-D); recrystallization kinetics; surface wettability; Introduction Crystalline bacterial protein layers (S-layers) are arrays of (glyco)proteins (Mw of 40 to 200 kDa) forming the outermost envelope of prokaryotes, and represent
  • obtained. The importance of such factors for the morphology and biological function of isolated proteins has been already shown in literature [16]. In this regard, the quartz crystal microbalance with dissipation monitoring (QCM-D) has proven to be a powerful technique to follow in situ the binding of S
PDF
Album
Full Research Paper
Published 11 Jan 2017

Surface-enhanced Raman scattering of self-assembled thiol monolayers and supported lipid membranes on thin anodic porous alumina

  • Marco Salerno,
  • Amirreza Shayganpour,
  • Barbara Salis and
  • Silvia Dante

Beilstein J. Nanotechnol. 2017, 8, 74–81, doi:10.3762/bjnano.8.8

Graphical Abstract
  • during the second step, were independently monitored by using a quartz crystal microbalance with dissipation monitoring (QCM-D) technique. The SLB membranes represent a simplified model system of the living cells membranes, which makes the successful observation of SERS on these films promising in view
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2017
Other Beilstein-Institut Open Science Activities